MODELING TOXIC COMPOUNDS

Supplement to Chapter 13

© Vladimir Novotny

TWO PHASE MOVEMENT OF TOXIC COMPOUNDS

PARTITIONING CONCEPT

Pollutants (hydrophobic organic toxic compounds, ammonium, phosphorus, toxic metals) exist in water or in sediment as

DISSOLVED Ionic form

ADSORBED Precipitated

Equilibrium

 Pb^{++}, Cu^{++}

CuS, PbS

In particulate form most of the contaminant are not toxic. The dissolved (ionic form) is toxic to aquatic organisms

The adsorption equilibrium is affected by a number of ligants such as pH, organic particulate matter, redox potential (O_2 concentration), clay content, chlorides (salinity), etc. The adsorption equilibrium between dissolved (ionic) and adsorbed (particulate) forms is expressed by adsorption isotherms, e.g,

Langmuir

$$r = \frac{Q^0 b C_e}{1 + b C_e}$$

Linear

$$r = \Pi C_e$$

r = adsorbed concentration of the contaminant (μ g/g of sediment) C_e = dissolved (ionized) concentration of the contaminant (μ g/L) Q⁰= adsorption maximum at fixed temperature (μ g/g of sediment) b= a constant related to energy of the net enthalpy of adsorption (L/ μ g) II= linear partitioning coefficient (L/g)

C_{dissolved} Linear Adsorption Isotherm

 m_{ss} = concentration of suspended solids or particulate carbon (g/L)

Total pollutant concentration in water

 $C_{total} = C_d + C_p = C_d + m_{ss}r = C_d (1 + \Pi m_{ss})$

In water

$$C_{e} = \frac{C_{total}}{1 + \Pi m_{ss}}$$

In sediment

$$C_{e} = \frac{C_{total}}{\theta + \Pi m_{ss}}$$

 $\theta = \text{porosity}$

PARTITIONING

Magnitude of the partitioning coefficient ranges from 1 L/g to 10⁶ L/g Solvents

PCBs, DDT

For toxic organics Π is related to the octanol partitioning coefficient K_{ow}

SCHEMATIC OF THE TOXIC MODEL

SCHEMATIC OF THREE LAYER MODEL

TWO PHASE TOXIC COMPOUND TRANSFER

IN WATER

$$dC_d \quad W_d \quad C_d$$

$$\frac{dC_d}{dt} = \frac{W_d}{V} - \frac{C_d}{t_0} - (K_1 + K_c + K_a)C_d + K_2C_p$$

Particulate $\frac{dC_p}{dt} = \frac{W_p}{V} - \frac{W_p}{V}$

Dissolved

$$-\frac{C_p}{t} + K_1 C_d - (K_2 + K_p + K_s) C_p$$

C_d=dissolved concentration; V= volume of the computational segment t_0 =detention time within the segment, V/Q K_1 =adsorption rate coefficient K_2 = desorption rate coefficient K_d =transfer (volatilization) rate coeff. K_s=v_s/H=sediment transfer rate v_s=settling (resuspension) velocity

C_p=adsorbed fraction concentration Q=flow through the segment K_c = decay rate coefficient, dissolved K_p=decay rate coeff., particular W_{c}^{P} , $W_{p} = mass$ input of the dissolved and adsorbed fractions

SEDIMENT MASS BALANCE

$$\frac{dm}{dt} = \frac{m_i}{t_0} - m \left[\frac{1}{t_0} + K_s \right]$$

- m= concentration of suspended sediment
- $m_i = W_s/Q$ =average concentration of suspended sediment in the input
- W_s= mass input of suspended solids into the segment
- t_0 = residence time in the control volume

 K_s = settling velocity or scour rate

FOOD WEB PROPAGATION

BIOMAGNIFICATION

Concentrations of the toxic compounds increase in the fatty tissues (lipid) of organisms with each trophic level

Body buildup= intake epuration

 $C(\mu g/g \text{ of lipid}) = BAFx C(\mu g/L \text{ in water})$

MODELS CAPABLE TO SIMULATE FATE OF TOXICS

DYNTOXRiverFar fieldOrganics, metalsWASP4Lake, riverFar fieldOrganics, metalsEstuaryEstuaryFar fieldOrganics, metalsHSP-FRiverFar fieldOrganics, metalsMINTEQUA2Lake,riverMetalsEstuaryEstuary