Cities of the Future A New Paradigm for Water Centric Sustainable Communities

Vladimir Novotny

planning, retrofitting, and building the next urban environment

AquaNova, LLC Mountain Green: Sustainable Communities Conference June 23, 2010 © V. Novotny

Trinity of sustainability

Society

Domestic use, basic food production

Global warming

HYDROPOLITICAL DISCOURSE

Environment water and air

Industrial and commercial use of water and water resources, land development, transportation

Economy

(Infrastructure)

Sustainability is achieved when outcomes which are socially, economically and environmentally sustainable, are successfully contended in the itergenerational context

Sustainable development

- Defined as one that meets the needs of the present without compromising the ability of future generations
- Urban sustainability is compromised by
 - Population increases and migration
 - In the next 50 years the world population is expected to increase 50% and the US population by 30-40%. The largest increases will occur in urban areas.
 - Increasing imperviousness of watersheds, more polluted runoff
 - Unbalanced hydrology by sewers and switch from community water and wastewater works to large regional transfers of water and sewage
 - Excessive use of water
 - Fast conveyance type drainage relying on sewers
 - Competing uses

PARADIGM

- A model and a set of rules how ideas are linked together and form a conceptual framework by which people build and operate the cities and manage their water resources
- It is based on logic, common sense, generational experience, and later, scientific knowledge
- It is derived by a discourse in the political domain; science or good engineering alone may not be the primary determinant of a paradigm
 - A wrong or outdated paradigm may persist because of tradition, lack of information about the pros and cons of the outdated paradigm or lack of resources to change it

First paradigm

Drainage of Agora in Athens

Pompeii in Italy street was the drainage

Wells for water supply,

streets for drainage, night soil disposal

Paradigm II

II. Long distance water transfers and storm water with some sewage drained by sewers

Rainwater harvesting and storage has been used for thousands years

Pont du Gard

Paradigms of urban drainage have changed over millennia - Paradigm II

Pont du Gard

Lead (Rome)

and wood pipes

Long distance water transfers and storm water with some sewage drained by sewers

Another aqueduct in France

Roman sewer Cloaka Maxima

Under the 3th

Paradigm
 Surface streams

 disappeared from the
 surface and were
 converted to combined
 sewers

Mill Creek in Philadelphia

A. BEFORE 1850 Philadelphia TODAY

Credit Historic Archives of the Philadelphia Water Department

Simple treatment plants were built in the first half of the 20th century

Cuyahoga River in Cleveland on fire

Gulf of Mexico on fire in May 2010

Paradigm IV

Control of CSOs in Milwaukee

Milwaukee has build 4 million m3 underground tunnel to store CSOs and by-passes from sanitary sewers. The tunnel reduced the frequency of overflows from about 40/year to 2/year. The target frequency was ordered by a court.

The tunnel was drilled 100 meter below surface in the dolomite formation (soft rock). Wall of the tunnel were grouted by epoxy grout to minimize groundwater infiltration. 3rd an 4th Paradigm resulted in a perfect delivery of pollutants to receiving waters

PROBLEMS WITH THE 4th PARADIGM

Natural hydrologic status of urban water bodies and watersheds has been modified by imperviousness, building sewers and stream modifications with the impacts on

Streams

- Increased high flows (more flooding).
- Peak flows increase by a factor of 4 to 10
- Less base flow not enough base flow to sustain viable fish population
- Increased variability (flow, temperature, DO
 - Increased stream bank erosion

Groundwater

- Groundwater recharge is diminished, leading to dropping the groundwater table.
 - Effect on foundations (Boston, Venice, Mexico City)
 - Diminishing groundwater supply
 - Diminished base flow

PROBLEM No or not enough base flow in urban streams

New Threats to Water Supplies and Ecology

Urban pond in China

Reservoir supplying water for Prague

 Hypertrophic water bodies (too much nutrient discharge causing extreme algal infestation – algal bloom)

– Toxins

- Loss of oxygen and biota
- Loss of recreation
- New chemicals accumulate in the environment
 - Endocrine disruptors
 - Pharmaceutical
 - Antibiotics
 - Nanoparticles

Urban Metabolism

A Linear

B Cyclic or Hybrid

Current urban systems are mostly linear

- Excessive water volumes are withdrawn from mostly distant surface and groundwater sources
 - Inside the community water is used only once and wastefully, e.g., treated drinking water is used in landscape irrigation for growing grass
 - Great losses of water by leaks and evapotranspiration
- Water is transferred underground to distant large wastewater treatment plants
 - The WTP use a lot of energy and emit carbon and often methane which are green house gases
 - The receiving water bodies become effluent dominated after discharge

Footprints

- A "footprint" is a quantitative measure showing the appropriation of natural resources by human beings
 - Ecological a measure of the use of bio-productive space (e.g., hectares (acres) of productive land needed to support life in the cities)
 - Water measures the total water use on site and also virtual water (usually expressed per capita)
 - Carbon is a measure of the impact that human activities have on the environment in terms of the amount of GHG emissions measured in units of carbon dioxide

Ecological footprint

Year	World	Available productive land				
	Population	Ha/person	Ac/person			
1995	< 6 billion	1.5	3.6			
2040	10 billion	<<1	2			
Current ecologica	l footprint					
Countries with 1 ha	/cap or less	Most cities in undeveloped countries				
Countries with 2-3	ha/person	Japan and Republic of Korea (democratic)				
Countries with 3-4	ha/person	Austria, Belgium, United Kingdom, Denmark, France, Germany, Netherlands, Switzerland				
Countries with 4-5	ha/person	Australia, Canada and USA				

If the cities in the currently rapidly developing countries (China, India, Brazil) try to reach the same resource use as that in developed countries, conflicts may ensue

Water footprint

On-site water use

- Domestic
 - Indoor
 - Outdoor (irrigation)
- Commercial
- Public (fire, parks)

Virtual

Source Hoekstra (2008)

 All water used in production in imported food and materials needed in the city

Water use in some cities

GHG (carbon) Emission by Cities

Top ten countries in the CO_2 emissions in tons/person-year in 2006 ¹														
Qatar	UAE	Kuwait	Bahr	rain	Aruba	Luxe	embourg	5	USA	Aus	tralia	Cana	da	Saudi Arabia
56.2	32.8	31.8	28.	.8	23.3	23.3 22.4			19.1	18	18.8		4	15.8
	Selected world cities total emissions of CO ₂ equivalent in tons/person-year ²													
Washington DC	Glasgow UK	Toronto CA	Shang Chi	ghai, ina	New York City Beijing London China UK		lon Ç	Tokyo Japan		eoul lorea	Barcelona Spain			
19.7	8.4	8.2	8.1	1	7.1 6.9		.9	6.2	2	4.8		3.8	3.4	
	Selected US cities domestic emissions of CO ₂ equivalent in tons/person-year ³													
San Diego CA	A San Francisco	o Bosto MA	on I	Portlan d OR	I Chica IL	ago T	fampa FL	Atla	ınta GA	TulsAustin TXMempaTNOKTN		Memphis TN		
7.2	4.5	8.7		8.9	9.3	}	9.3		10.4	9).9	12.6	5	11.06
¹ Wikipedia (2009); ² Dodman (2009); ³ Gleaser and Kahn (2008) ^{2,3} Values include transportation, heating, and electricity														

GHG = Green House Gases (CO_2 , methane, nitrogen oxides and other gases)

PROBLEMS WITH THE 4th PARADIGM

- Natural hydrologic status of urban water bodies and watersheds has been modified by imperviousness, building sewers and stream modifications with the impacts on
 - **Streams**
 - Increased high flows (more flooding).
 - Peak flows increase by a factor of 4 to 10
 - Less base flow not enough base flow to sustain viable fish population
 - Increased variability (flow, temperature, DO)
 - Increased stream bank erosion
 - Groundwater recharge is diminished
 - Effect on foundations (Boston, Venice, Mexico City, Philadelphia
 - Diminishing groundwater supply
 - Diminish base flow in river
 - The goals of the Clean Water Act and OPL goals cannot be attained using the IVth paradigm infrastructure heavy and energy demanding concepts

Mexico City

Processes of resource recovery and conservation of diminishing resources

- Water conservation and reclamation and reuse of used water
- Energy use savings and reclamation from various sources, such as heat, electricity, methane recovery from wastewater and organic wastes, and renewable wind, solar, and geothermal power sources
- Recycling of organic solid waste for power generation by incineration or methane biogas production, or cardboard or paper production
- Recycling of inorganic waste from metal, asphalt, glass, insulation, construction materials, and other products

Driving Forces towards Sustainability

- Increasing water scarcity, excessive flooding and conversion into effluent dominated waters will require management of the total urban water hydrological cycle and decentralization of the urban sewerage
- Goals of achieving good ecological status and integrity are mandated by Clean Water Act in US and Water Framework Directive in EU and desired by public
 - Limits have been reached and something has to be done
- Cities are rapidly expanding and new large cities have to be build to accommodate population growth and movement from rural to urban areas

Vision of the Cities of the Future

Definition/Vision of an Ecocity:

An ecocity is a city or a part thereof that balances social, economic and environmental factors (triple bottom line) to achieve sustainable development. A sustainable city or ecocity is a city designed with consideration of environmental impact, inhabited by people dedicated to minimization of required inputs of energy, water and food, and waste output of heat, air pollution - CO2, methane, and water pollution. Ideally, a sustainable city powers itself with renewable sources of energy, creates the smallest possible ecological footprint, and produces the lowest quantity of pollution possible. It also uses land efficiently; composts used materials, recycle or convert wasteto-energy. If such practices are adapted, overall contribution of the city to climate change will be none or minimal below the resiliency threshold. Urban (green) infrastructure, resilient and hydrologically and ecologically functioning landscape, and water resources will constitute one system

Adapted from R. Register UC-Berkeley

What is a Water Centric Ecocity ?

What is a Water Centric Ecocity ?

- Water conservation
- Distributed stormwater management (surface)
- Distributed water treatment
- Water reclamation and reuse in buildings, irrigation and for ecologic stream flow
- Infiltration and repair of hydrology
- Stream restoration multi-functional water bodies are a life line of the ecocity

- Heat and energy recovery
- Organic solids management for energy recovery
- Source separation
- Nutrient recovery
- Renewable energy source (solar, wind, hydropower)
- Sustainable low carbon traffic emissions
- Recreation, walking, biking
 - Suburban organic agriculture

Microscale Assessment

intal Design

Microscale (buildings, neighborhoods, subdivision

- Leadership in Energy and Environme LEED
 - Sustainability of the site smart location
 - Green design
 - Energy efficiency
 - Indoor environmental quality
 - Innovation and design
 - Neighborhood patterns, etc.
 - Low Impact Development (LID)
 - Capture, storage and infiltration of precipitation, mimicking predevelopment hydrology

One Planet Living (WWF)

- zero net carbon emissions- 100% of the energy from renewable resources;
- zero solid waste
- sustainable transportation with zero carbon emission in the city;
- local and sustainable materials used throughout the construction;
- sustainable foods, outlets providing organic and or fair trade products;
- 50% reduction in water use from the national average,
 - natural habitat and wildlife protection and preservation,
- preservation of local culture and heritage ;
- equity and fair trade with wages and working conditions; and
- health and happiness for every demographic group.

Best Management Practices are an integral part of the COFs

Green Roofs

Save energy and store water

Raingarderns

Infiltrate and treat runoff

Porous pavement

Infiltrate, store and treat runoff

Ponds and wetlands

Store, treat and infiltrate runoff

Urban water body restoration and daylighting is important

Lincoln Creek in Milwaukee Zhuan River in Beijing

Kallong River in Singapore

There is no waste – new sustainability terminology

- Waste water → Used water
- Treated wastewater that meets standards for discharge into receiving waters and other nonpotable uses → Reclaimed water
- Reclaimed water treated to potable water quality for reuse in buildings → NEWater (Singapore terminology)

 Treatment plant with recovery of biogas, energy, nutrients, etc. → Integrated resource recovery facility

A water reclamation plant does not have to be far from the community

Courtesy AquaTex, Victoria, BC

Rainwater harvesting requires minimum energy

Roof rainwater collecting tank in Orange District in Australia

Decentralized Management Clusters and Ecoblocks

- A cluster (Ecoblock) is a semiautonomous part of the city that, for most part, has its own water/stormwater/wastewater management
 - Cluster may range in size from a high-rise building to a subdivision or a section of the city with thousands of inhabitants
 - Cluster infrastructure
 - Distributes water and practices water conservation and reuse
 - Implements energy saving in buildings (e.g., green roofs, solar energy)
 - Provides stormwater conveyance (mostly surface), storage and infiltration (groundwater recharge) and nature mimicking BMPs
 - Water reclamation units (high efficiency WWT)
 - Energy recovery from wastewater
 - Centralized or distributed biogas/Energy recovery
 - Ecologically and hydrologically functioning landscape
- Clusters are interconnected for increased resiliency

Microscale Assessment

intal Design

Microscale (buildings, neighborhoods, subdivision

- Leadership in Energy and Environme LEED
 - Sustainability of the site smart location
 - Green design
 - Energy efficiency
 - Indoor environmental quality
 - Innovation and design
 - Neighborhood patterns, etc.
 - Low Impact Development (LID)
 - Capture, storage and infiltration of precipitation, mimicking predevelopment hydrology

Missing link in the assessment

- Fuzzy impact of LEED and similar criteria on
 - Sustainability of water resources, their water quality and integrity
 - Improving resilience against the impact of extreme events
 - Protection and enhancement of urban natural resources (nature preserves or parks)
 - Access of people to recreation
- Conversion to or building ecocities, requires a comprehensive an hierarchical macroscale approach to the microscale often fragmented piecemeal transformation.

Sustainability means that future developments and city retrofits address the societal, environmental and economic concerns and goals

Result of LID:Low density subdivisions

Seven Ecocities Reviewed

Water Centric Hannerby Sostal

Venice -type ecocity on Yangzee River

Water centric

QINGDAO (China) Ecoblock

Size 3.5 ha 1530-1800 pop

Treatment wetland

/ Subsurface flow wetland

- Mass replicable
- Economically viable
- Resource selfsufficient (water, waste, energy)
- 100% waste water recycled on site

Constructed wetland in CR for 1000 connected inhabitants. Area 0.5 ha (J. Vymazal)

Source Harrison Fraker and ARUP

600 units on 2.7 ha (6.5 acres)

Sino-Singapore Ecocity Tianjin

Masdar (UAE)

Treasure Island (CA)

Sonoma Mountain Village (CA)

City	Population Total	Population Density #/ha	Water use L/cap-day	% water recycle	Water System	% Energy savings renewable	Green area m²/cap	Cost US\$/unit*
Hammarby Sjőstad	30,000	133	100	0	Linear	50	40	200,000
Dongtan	500,000 (80,000) ⁺⁺	160	200	43	Linear	100	100	~40,000
Qingdao	1500+	430 - 515	160	85	Closed Dop	100	~15	?
Tianjin	350,0)0 (50,00()) ⁺⁺	117	160	60	F'artially closed	15	15	60,000 – 70,000
Masdar	50,000	135	160	80	Closed oop	100	<10	1 million
Treasure Island	13,500	170	264	25	Mostly Linear	60	75	550,000
Sonoma Valley	5,000	62	185	22	Linear	100	20	525,000

+ ecoblock only, an ecocity may consist of many interconnected ecoblocks

Population density matters

Difficult to compare US cities with Asian Cities or countries with different economic levels

Based on Newman and various other sources

Qingdao

Tianjin Water Cycles

The cycles need urban runoff

The number of cycles without make up water is very limited.

Make up water comes mainly from treated (and stored) storm water

> PS – primary settler MF microfiltration UV ultraviolet ST storage RO reverse osm. NF nanofiltration

Closed (reuse) water cycle needs outside water during dry weather

Potable water

- Additional make up water to flush the residual pollutants from the recycling water
- Replacing water loses by evaporation and evapotranspiration
- Replacing waste water lost in sludge and backwash water
 Provide irrigation and ecological flow

Min 30% of the recycled water needs to be replaced

Treated surface runoff and rain harvesting is needed

Rules of recycle

- During dry weather conditions the system must provide ecological flow (plus irrigation) otherwise the ecology of the urban waters will collapse
 - All excess flow plus flow from storage goes towards ecological flow and irrigation
- During wet weather conditions the system
 - Provides make up water for the second (gray water recycle)
 - Treats and stores urban runoff
- Drinking water from the grid or desalination supplemented by harvested rain and/or groundwater

A water management based on quality parameters is needed

National Science & Technology Council (2008) of the US President

Energy delivered from the grid 1 kW-hr = $0.6 \text{ kg CO}_2 \text{ emissions}$

Water Energy Nexus How to get to net zero energy

Energy requirements for water

US average energy use for providing water and wastewater disposal is 2.26 kw-hr/m³ (1.35 kg CO_2/m^3)

Treatment process	Energy use Daily flow volun 10.000	kw-hr/m ³ (CO ₂ emis ne of treated used w 25.000	ssions kg/m ³) /ater (m3/day) >50.000
	,		
Activated sludge without	0.55 (0.33)	0.38 (0.23)	0.28 (0.17)
nitrification and filtration			
Membrane bioreactor	0.83 (0.51)	0.72 (0.44)	0.64 (0.37)
with nitrification			
Reverse osmosis desalinatio	n		
Brackish water (TDS	1 – 2.5 g/L)	1.5 (0.91) –	2.5 (1.52)
Sea water		5 (3.05) - 1	5 (9.15)
Ozonization (ozone produced	from air)		
Filtered nitrified efflue	ent	0.24 (0.15)	- 0.4 (0.24)

Modified from Asano et al (2007)

Indoor and outdoor water use in a single family home in 12 monitored cities in North America

Water use	Without conserv	water ation [*]	With water conservation		
	Liter/cap- day	Percent	Liter/cap- day	Percent	
Faucets	35	14.7	35	25.8	
Drinking water and cooling	3.6	1.2	2.0	1.5	
Showers	42	17.8	21	15.4	
Bath and Hot Tubs	6.8	2.0	6.0	4.4	
Laundry	54	22.6	40	29.4	
Dish washers	3.0	1.4	3.0	2.2	
Toilets	63	26.4	14	10.3	
Leaks	30	12.6	15	11.0	
Total Indoor	238	100	136	100	
Outdoor	313	132	60**	44	
Total	(551)	232	196	144	

Water conservation reduces proportionally energy use

AWWA RF (1999); Heaney, Wright and Sample (2000) and Asano et al. (2007) ** Converting from lawn to xeriscape.

Reuse

Energy demanding

Microfiltration

Reverse osmosis

UV radiation

Domestic energy savings

Passive energy savings

Residential Energy Consumption Survey.

Heat Pump Water Heater Heat pump Fan Compressor * Air to air Hot water outlet Evaporator Tankless water Temperature/ pressure relief valve •Water to air heaters Upper thermostat Anode Resistance •Water to water elements THURBLE Condenser Lower thermostat Cold water inlet Insulation •Ground to water Drain

Solar energy

Concentrated heat

Photovoltaics

30 % from Renewable Energy

Passive energy sources

1.4. MW Voltaics array in Sonoma Valley

Household voltaics

Wind turbines in Dongtan

Energy from used water

- Heat recovered by heat pumps
- Biogas from anaerobic processes
 - Digester
 - Upflow anaerobic sludge blanket reactor
- Hydrogen fuel cellMicrobial fuel cell

Types of gas	Biogas 1 Househol d waste	Biogas 2 Agrifood industry	Natural gas
Composition	60% CH ₄ 33 % CO ₂ 1% N ₂ 0% O ₂ 6% H ₂ O	68% CH ₄ 26 % CO ₂ 1% N ₂ 0% O ₂ 5 % H ₂ O	97.0% CH4 2.2% CO_2 0.4% N_2 0.4 % other
Energy content kWh/m ³	6.1	7.5	11.3

Examples of new technologies

UASB Reactor

- 0.4 L CH4/g COD removed
- 9.2 kW-hr/m³ of methane

Hydrogen fuel cell with biogas reforming

•Converts methane into hydrogen and electricity

•Greater efficiency than methane combustion SMR = Steam methane reforming

Microbial fuel cell (Logan 2008)

•Convert organic biomass directly into electricity or hydrogen

Integrated Resource Recovery Facility

20 – 25 years ahead outlook

Per capita CH₂ emissions in 100 US cities

Energy use for	CO ₂ emissions in tons/cap- year	% of total
Transportation by cars	4.091	47.0
Public transportation	0.388	4.4
Home heating by gas or oil	1.470	17.0
House electricity including that for cooling	2,751	31.6
Total	8.71	100

Source Gleaser and Kahn (2008)

It appears that the US increasing trend of carbon emissions has been reversed in 2007 (Brown, 2009) Higher appliance energy standards
Stricter automobile emissions standard
Virtual phasing out of coal power plants
Very large increase of renewable energy production, etc.

Conservative assumptions for the future

- Carbon foot print of the electric energy production will be reduced from 0.62 kg CO₂/kW-hr today to 0.35 kg CO₂/kW-hr by 2030 – 2035
- Vehicular traffic- majority of cars will be hybrid and plugins, expected GHG emissions reduced by 60%. Minimum traffic is anticipated in ecocities
- Public transportation by electric trains, light rail and buses will increase but the carbon footprint will decrease
- Heating by passive energy savings, insulation and using heat pumps will reduce heating carbon footprint
- Electricity use by households is expected to decrease by 60 – 70 % (National Science and Technology Council)

These measures could reduce carbon footprint from 8.7 tons of CO_2 /cap-year to 3 tons CO2/cap-year (slightly less than Barcelona today)

Water/used water contribution

- Reducing water use from 0.5 m³/person-day to 0.2 m³/person-day will reduce carbon footprint by 0.2 tons/cap/-year
- Extracting heat from used water and producing electricity from UASB biogas by fuel cell
 0.47 tons/cap/-year
- Miscellaneous (reduction of pumping cost by bringing stormwater drainage to surface, etc.) 0.3 tons/cap/-year
- Biogas combustion or burning vegetation residues, and combustible refuse in incinerators is carbon neutral

Total new water/stormwater/used water management carbon footprint reduction

1 ton/cap-year

CONCLUSIONS ON ECOCITIES

- Ecocities are emerging and will be tested
- A complete change of the paradigm
 - Closed hydrologic cycle (reuse, recycle), surface drainage
- Zero or minimal carbon imprint
 - Energy recovery from wastewater
 - Distributed resource recovery, minimum sewers
 - Alternate energy sources
 - Carbon sequestering
- Terrific public transportation, walking and biking
- Alternate energy sources
- Stream restoration and protection of ecosystems
- Leisure and recreation
- Huge new infrastructure business potential

Conclusions

- US has one of the highest per capita footprint
 - Low density urban centers
 - High automobile use
 - Great reliance on fossil fuel (primarily coal) power production
- Adopting and adapting the ecocity guidelines is Increasing significantly production from renewable carbon free sources
 - Water conservation is effective
 - Biogas conversion to electricity or hydrogen with carbon sequestering is effective
 - Wind turbines on each block
 - Large inclusion of solar power
 - Limiting automobile use, hybrids and electric pug-ins are very effective
 - Heat recovery from used water
 - More efficient appliances and heating (e.g., heat pumps)
- The goal of net zero carbon footprint from COTF is achievable by 2030 even in the US

Worldwide Initiative –Cities of the Future

- Beginning in US Wingspread Workshop -2006
- IWA Congresses Beijing 2006, Vienna 2008
- Singapore International Water Week Convention COTF became the major IWA initiative- Steering Committee formed
- Beijing SWIF Conference November 2009
- WEF/IWA Conference March 2010 Boston
- IWA World Water Congress 2010 Montreal
- IWA/WEF COTF Conference 2011 Stockholm
- IWA COTF Conference 2011 Xi'an
- WEF/IWA COTF Conference 2012
- IWA COTF Conference Turkey

All invited