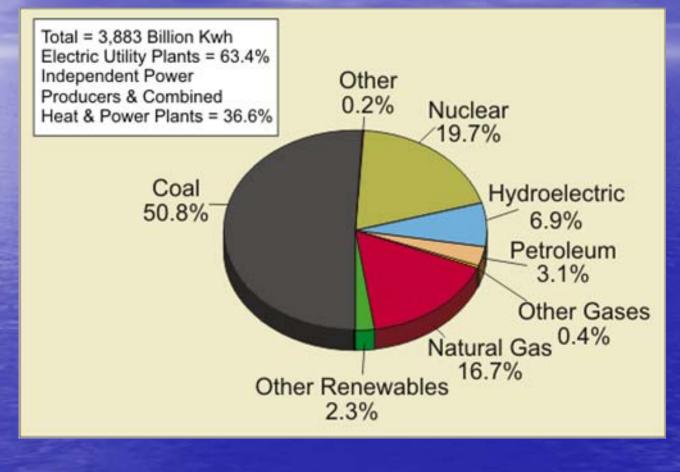
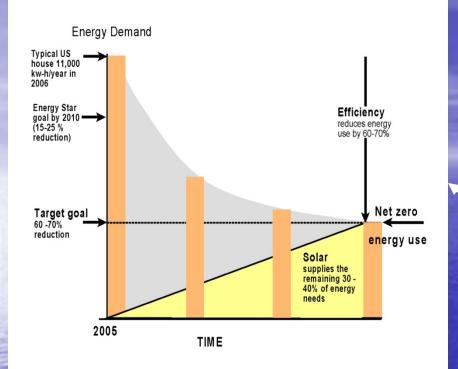
Water – Energy Nexus in the Cities of the Future Chapter VIII


planning, retrofitting, and building the next urban environment

VLADIMIR NOVOTNY JACK AHERN PAUL BROWN

© Vladimir Novotny AquaNova, LLC

Energy produced in US



1 Kw-hr = 0.61 kg GHG

GHG (carbon) Emission by Cities

Top ten countries in the CO_2 emissions in tons/person-year in 2006 ¹													
Qatar	UAE	Kuwait	Bahrain	Aru	uba Luxembourg		U	SA	Australia		Canada	Saudi Arabia	
56.2	32.8	31.8	28.8	23.	23.3 22.4		19	9.1	18.8		17.4	15.8	
Selected world cities total emissions of CO ₂ equivalent in tons/person-year ²													
Washington DC	Glasgow UK	Toronto CA	Shanghai, China	New	v York Ci	ty	Beijing China		Londo UK		Tokyo Japan	Seou Korea	
19.7	8.4	8.2	8.1		7.1		6.9		6.2		4.8	3.8	3.4
Selected US cities domestic emissions of CO ₂ equivalent in tons/person-year ³													
San Diego CA	A San Francisc	o MA			Chicago IL	Tam FL	-	tlan	ıta GA	Tuls a OK		Austin TX	Memphis TN
7.2	4.5	8.7	8.9		9.3	9.3	3	10).4	9.9		12.6	11.06
¹ Wikipedia (2009); ² Dodman (2009); ³ Gleaser and Kahn (2008) ^{2,3} Values include transportation, heating, and electricity													

GHG = Green House Gases (CO_2 , methane, nitrogen oxides and other gases)

Energy delivered from the grid 1 kW-hr = $0.6 \text{ kg CO}_2 \text{ emissions}$

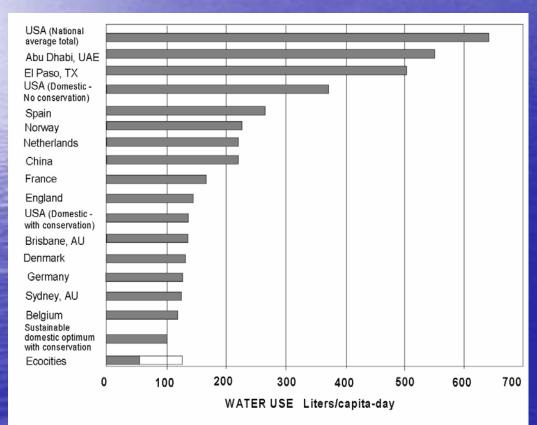
Water Energy Nexus How to get to net zero energy

National Science & Technology Council (2008) of the US President

•Implement water and energy conservation – 60-70% of the goal of net zero

•Wind and solar energy to supply remaining 30 – 40 %

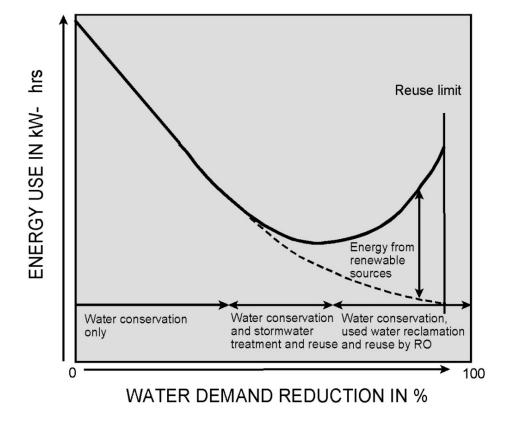
•Switch to more efficient transportation


o Walking, biking oElectric cars, plug-ins oPublic transport

Indoor and outdoor water use in a single family home in 12 monitored cities in North America

Water use	Without v conserva		With water conservation			
	Liter/cap-day	Percent	Liter/cap-day	Percent		
Faucets	35	14.7	35	25.8		
Drinking water and cooling	3.6	1.2	2.0	1.5		
Showers	42	17.8	21	15.4		
Bath and Hot Tubs	6.8	2.0	6.0	4.4		
Laundry	54	22.6	40	29.4		
Dish washers	3.0	1.4	3.0	2.2		
Toilets	63	26.4	14	10.3		
Leaks	30	12.6	15	11.0		
Total Indoor	238	100	136	100		
Outdoor	313	132	60**	44		
Total	551	232	196	144		

AWWA RF (1999); Heaney, Wright and Sample (2000) and Asano et al. (2007) ** Converting from lawn to xeriscape.


Water conservation reduces proportionally Carbon emissions

In the US, producing, transporting, treating, and disposing used water and sludge requires 2.25 kw-hr/m³ of delivered water

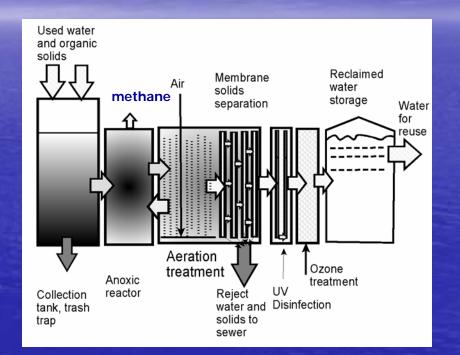
This corresponds to 1.37 kg of CO₃/m3

Water conservation vs. Recycle

•Water conservation reduces proportionally energy and GHG emissions

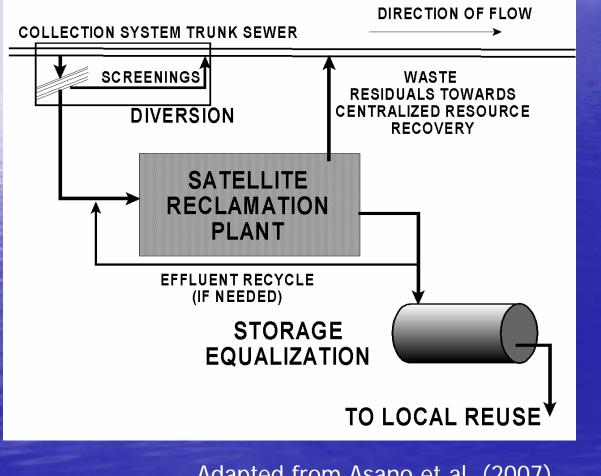
•Reclaiming rainwater and stormwater needs some energy

•Adding reuse by microifiltration and reverse osmosis increases energy use and GHG emissions


Rainwater harvesting requires minimum energy

Roof rainwater collecting tank in Orange District in Australia

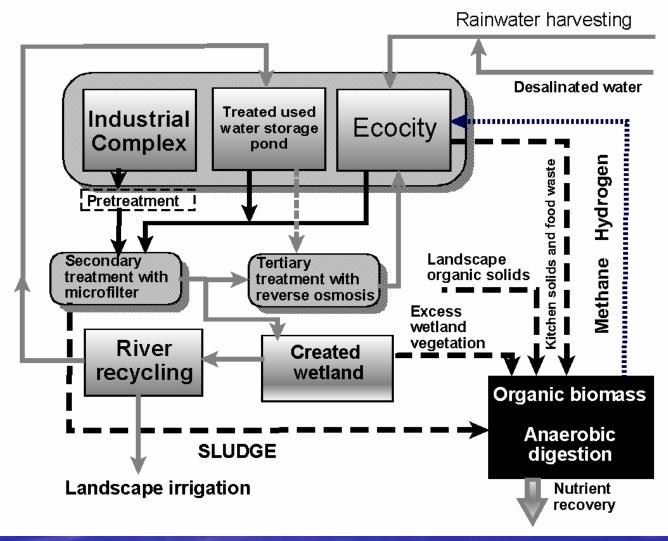
Water reclamation and reuse for toilet flushing and possibly irrigation



Rainwater harvesting and reuse for irrigation is also practiced

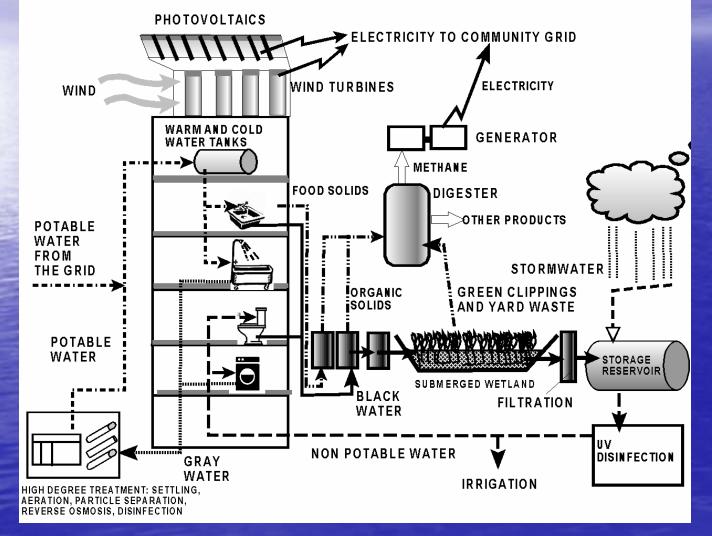
Battery Park Solaire development in New York - a semiautonomous water/used water management cluster

If raw water is needed for local reuse sewers can be a source


Package and small high efficiency treatment units can be installed to provide locally water for:

 Ecological flow of restored streams

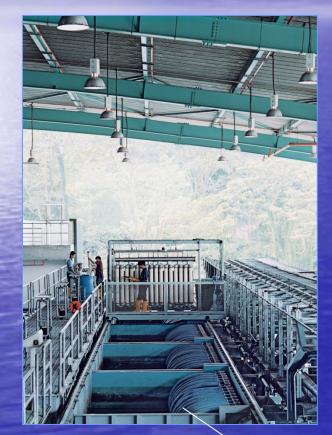
- Toilet flushing
- Landscape irrigation
- Street flushing


Adapted from Asano et al. (2007)

System – wide reclamation (centralized) and reuse - Tianjin

Picture credit Sino – Singapore development agency replotted and adapted

Qingdao double partially decentralized loop with used water separation



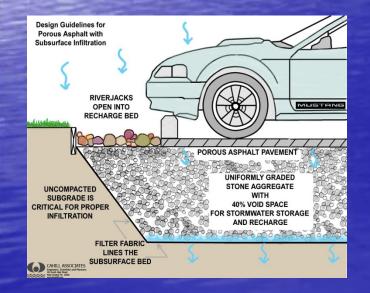
Small direct potable reuse
Wetland (surface)

Problem:

treating black used water too close to inhabited buildings

Energy demanding

Microfiltration


Picture credits V.Novotny and Siemens Reverse osmosis

UV radiation

LLACE & TIER IAN

Best Management Practices are an integral part of the COFs

Green Roofs

Save energy and store water

Raingarderns

Infiltrate and treat runoff

Porous pavement

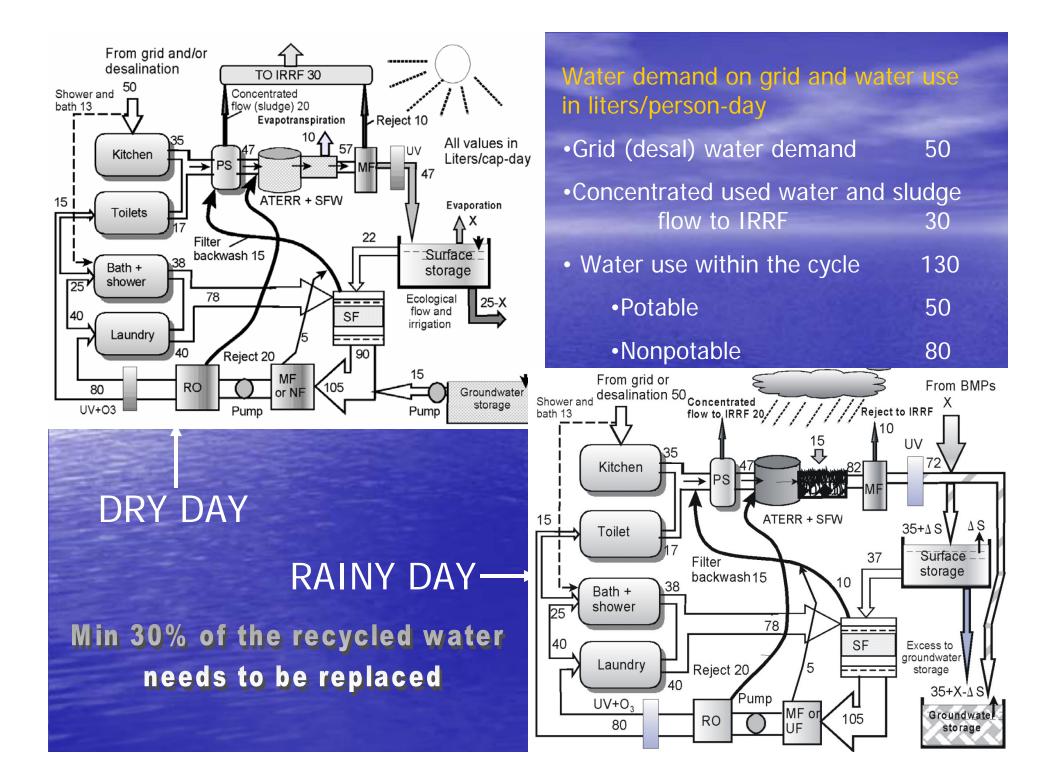
Infiltrate, store and treat runoff

Ponds and wetlands

Store, treat and infiltrate runoff

Centralized or decentralized water management system

- Centralized once through system is appropriate if only water conservation is considered
 - Heat energy recovery may not be feasible
 - Water reuse for toilet flushing and irrigation may be not economical or efficient – system wide dual piping is needed
 - Nutrient recovery and biogas recovery and conversion to electricity is efficient
- Fully decentralized into small clusters
 - Most efficient for heat and water reclamation
 - Energy and labor demanding but savings on transporting used water reclaimed water is used on site
 - Biogas production, use and conversion to electricity may be difficult and inefficient
- Hybrid system retains advantages of both systems


Double loop reuse with separation based on Qingdao double loop for a cluster (ecoblock)

POTABLE DESALINATED WATER WATER Solids and concentrated FROM GRID flow to regional Solid food waste BUILDINGS integrated resources PRECIPITATION recovery facility Roof runoff Biogas MF SFW-V Pervious pavement ATERR UV+O. **BLACK WATER LOOP** Filter backwash Heat recovery Pump Underground SF Reject or surface MF brine (pond) storage GRAY WATER LOOP Storage overflow and ecologic flow ΠV RO High pressure Aquifer Stream or WATER FOR REUSE pump ST storage Landscape irrigation and Compressed air other external nonpotable uses

The number of cycles without make up water is very limited. Make up water

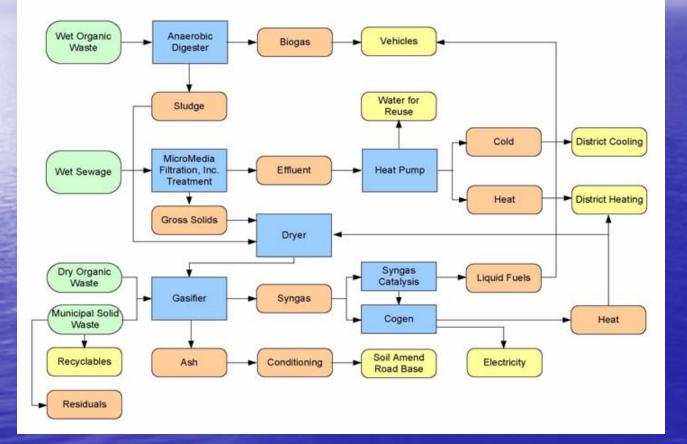
comes mainly from treated (and stored) storm water

PS – primary settler ATERR anaerobic treatment and energy recovery reactor MF microfiltration SFW-V subsurface flow wetland –vertical flow UV ultraviolet radiation ST storage RO reverse osmosis NF nanofiltration

Rules of recycle

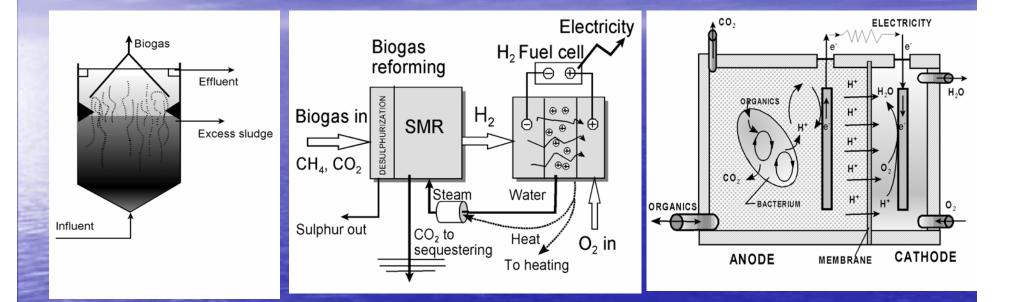
- During dry weather conditions the system must provide ecological flow (plus irrigation) otherwise the ecology of the urban waters will collapse
 - All excess flow plus flow from storage goes towards ecological flow and irrigation
- During wet weather conditions the system
 - Provides make up water for the second (gray water recycle)
 - Treats and stores urban runoff
- Drinking water provided from the grid or desalination supplemented by harvested rain and/or groundwater

A water management based on quality parameters is needed


Energy from used water

- Heat recovered by heat pumps
 - Biogas from anaerobic processes
 - Digester
 - Upflow anaerobic sludge blanket reactor
- Hydrogen fuel cell
 - Microbial fuel cell
- Syngas from organic solids

Types of gas	Biogas 1 Household waste	Biogas 2 Agrifood industry	Natural gas
Composition	60% CH ₄ 33 % CO ₂ 1% N ₂ 0% O ₂ 6% H ₂ O	68% CH ₄ 26 % CO ₂ 1% N ₂ 0% O ₂ 5 % H ₂ O	97.0% CH4 2.2% CO ₂ 0.4% N ₂ 0.4 % other
Energy content kWh/m ³	6.1	7.5	11.3


Integrated Resource ManagementTM

Syngas = wood gas produced by high temperature heating of organic solids without oxygen main content is carbon monoxide

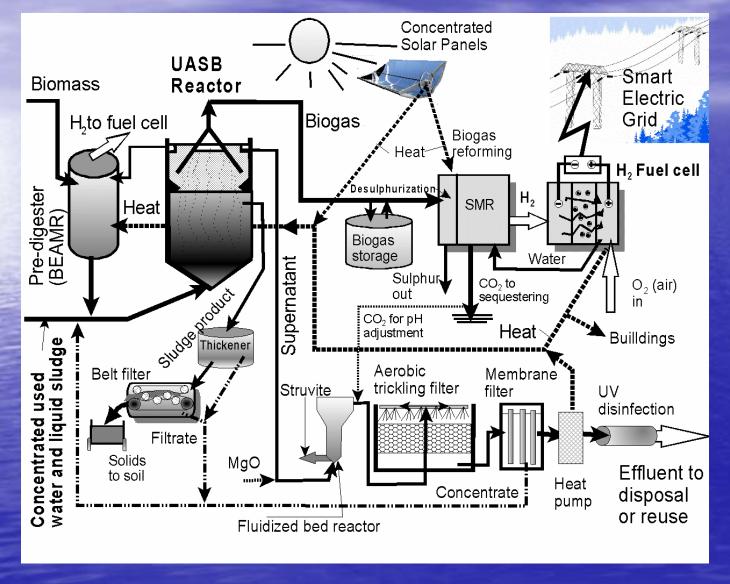
Source and credit AquaTex Scientific Consulting Ltd, Victoria BC

Examples of new technologies

UASB Reactor
0.4 L CH4/g COD removed
9.2 kW-hr/m³ of

methane

Hydrogen fuel cell with biogas reforming


•Converts methane into hydrogen and electricity

•Greater efficiency than methane combustion SMR = Steam methane reforming

Microbial fuel cell

Converts organic biomass directly into electricity or hydrogen (from Rabaey and Vestrate, 2005)

Integrated Resource Recovery Facility – IRRF (Future)

IRRF produces

•Reclaimed water for reuse

•Heat for heating reactors and buildings

•Struvite (ammoniummagnesium phosphate) fertilizer

•Biogas and hydrogen

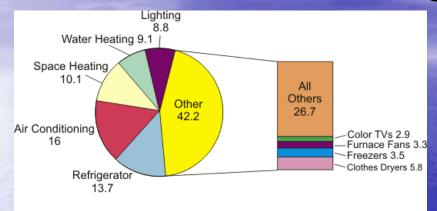
Electricity

Organic solids

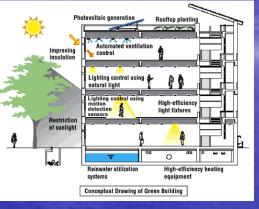
•Carbon sequetering

BEARM = Bioelectrochemically assisted microbial reactor - Logan (2008) Se

Fuel cell converts biogas into electricity


High Temperature Fuel Cell by Acunmetric has been installed in Hammarby Sjöstad.

Low temperature cell operates around 60 – 70°C while the high temperature cell shown herein operates at 600-700°C. This enables to utilize heat more efficiently.


Fuel cell reforms biogas into CO_2 and H_2 . Hydrogen is then combined with oxygen (air) to produce electricity and water. Carbon dioxide can be sequestered.

Source: GlashusEtt, Hammarby Sjöstad, Stockholm

Domestic energy savings

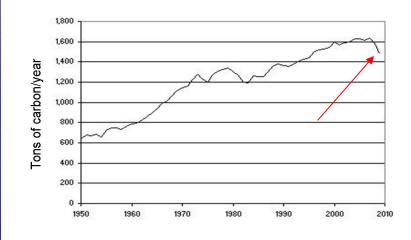
Passive energy savings

Source: Energy Information Administration, Form EIA-457A, B, C, E, and H of the 2001 Residential Energy Consumption Survey.

Tankless water

heaters

Heat pump


- * Air to air
- •Water to air
- •Water to water
- •Ground to water

20 – 25 years ahead outlook

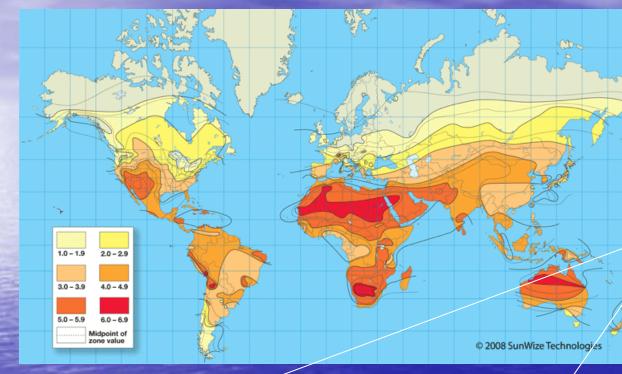
Per capita CO₂ emissions in 100 US cities

Energy use for	CO ₂ emissions in tons/cap- year	% of total
Transportation by cars	4.091	47.0
Public transportation	0.388	4.4
Home heating by gas or oil	1.470	17.0
House electricity including that for cooling	2,751	31.6
Total	8.71	100

Source Gleaser and Kahn (2008)

It appears that in the US increasing trend of carbon emissions has been reversed in 2007 (Brown, 2009) Higher appliance energy standards
Stricter automobile emissions standard
Virtual phasing out of coal power plants
Very large increase of renewable energy production, etc.

Renewable energy sources

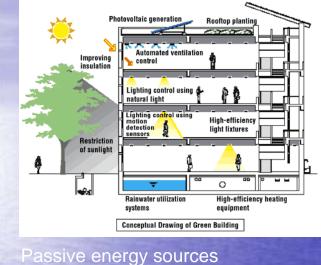

Potential renewable energy sources (from Johnson, 2009)SourceElectric energy generation potential worldwide
TerraWatts-hrs in a year*

Solar photovoltaics	470,278
Concentrating solar	275,556
Wind (land based)	105,556
Ocean (tidal and wave)	91,398
Hydropower	13,889
Geothermal	12,500
Wind (offshore)	6,111

Sources: NASA, World energy statistics and balances; OECD/IEA 2008, National Renewable Energy Laboratory;

1 Terra Watt = 10^{12} Watts

Solar energy



Concentrated heat

Photovoltaics

30 % from Renewable Energy

1.4. MW Voltaics array in Sonoma Valley

Mariah power

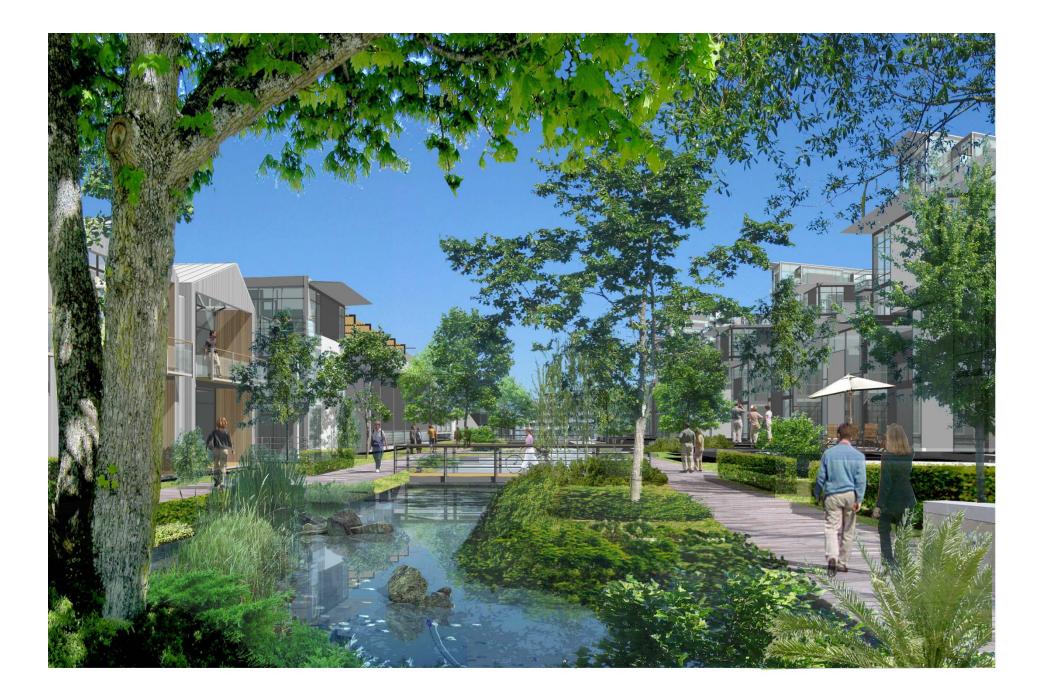
Wind turbines in Dongtan – courtesy Arup

Conservative assumptions for the future

- Carbon foot print of the electric energy production will be reduced from 0.62 kg CO₂/kW-hr today to 0.35 kg CO₂/kW-hr by 2030 – 2035
- Vehicular traffic- majority of cars will be hybrid and plugins, expected GHG emissions reduced by 60%. Minimum traffic is anticipated in ecocities
- Public transportation by electric trains, light rail and buses will increase but the carbon footprint will decrease
- Heating by passive energy savings, insulation and using heat pumps will reduce heating carbon footprint
- Electricity use by households is expected to decrease by 60 – 70 % (National Science and Technology Council)

These measures could reduce carbon footprint from 8.7 tons of CO_2 /cap-year to 3 tons CO2/cap-year (slightly less than Barcelona today)

Water/used water contribution


- Reducing water use from 0.5 m³/person-day to 0.2 m³/person-day will reduce carbon footprint by 0.2 tons/cap/-year
- Extracting heat from used water and producing electricity from UASB biogas by fuel cell
 0.47 tons/cap/-year
- Miscellaneous (reduction of pumping cost by bringing stormwater drainage to surface, etc.)
 0.3 tons/cap/-year
- Biogas combustion or burning vegetation residues, and combustible refuse in incinerators is carbon neutral

Total new water/stormwater/used water management carbon footprint reduction

1 ton/cap-year

Conclusions

- US has one of the highest per capita footprint
 - Low density urban centers
 - High automobile use
 - Great reliance on fossil fuel (primarily coal) power production
- Adopting and adapting the ecocity guidelines increases significantly production from renewable carbon free sources
 - Water conservation is effective
 - Biogas conversion to electricity or hydrogen with carbon sequestering is effective
 - Wind turbines on each block
 - Large inclusion of solar power
 - Limiting automobile use, hybrids and electric plug-ins are very effective
 - Heat recovery from used water
 - More efficient appliances and heating (e.g., heat pumps)
- The goal of net zero carbon footprint is achievable by 2030 even in the US

Dockside Greens in Victoria, BC. Courtesy AquaTex Scientific Consulting